Last updated: August 15, 2021

Our method

45Products analysed

30Hours spent

26Evaluated articles

110User reviews

You have heard of superoxide dismutase or sod, but don't really know what it is? Not sure if sodium can really help with Alzheimer's, arthritis or diabetic complications? In this article we have looked into all this and would like to answer your questions.

In our sod test 2021 we give you the most important insights into the effects and applications of sod. For this purpose, we have looked into various studies to give you a solid overview of the topic of sodium carbonate.




The most important facts in brief

  • Superoxide dismutase (Sod for short) is an enzyme that occurs naturally in the body, but is also found in some plants. It splits the free radical superoxide into oxygen and hydrogen peroxide.
  • Sod is said to have an antioxidant effect, but its use in medicine and empirically is still controversial.
  • However, some healing effects of sodium carbonate have been proven. These include, for example, the pain-relieving effect in rheumatoid arthritis and the positive influence in detoxification processes.

The Best Sod: Our Picks

Guide: Frequently asked questions about sodium bicarbonate answered in detail

In order to inform you comprehensively about the effectiveness of sodium bicarbonate and to give you an understanding of the current state of science, we have summarised all the important information in the following sections.

What is sodium carbonate and how does it work?

Superoxide dismutase, more commonly known as sod, is one of the most abundant enzymes in the human body - but it is also found in various plants. Sod is part of the body's defence and detoxification system and can act as a powerful antioxidant.

sod-test

Here you can see the type of melon from which sod can be obtained. (Image source: Elena Mozhvilo / unsplash)

This antioxidant effect can combat oxidative stress. Sod converts the free radical superoxide into oxygen and hydrogen peroxide, which is less harmful than superoxide (1).

Protection against diseases of civilisation

Chronic degenerative diseases (diseases of civilisation) such as cancer (2, 3), Alzheimer's disease (4, 5) and cardiovascular diseases (6) can be promoted by free radicals. Sod can also support the function of the heart muscle after a heart attack.

Oxygen radicals in increased concentration can lead to the splitting off of electrons in lipids, creating free radicals and damaging cells (lipid peroxidation (7, 8)). Sod can contribute to the protection against the above-mentioned diseases of civilisation through its antioxidant abilities.

Protection against diabetic complications

Diabetes mellitus can lead to increased oxidative stress. In addition, increased blood sugar levels can lead to an antioxidant deficiency (9).

sod-test

As a diabetic, taking soda can be useful. (Image source: Mykenzie Johnson / unsplash)

By deactivating free radicals, sodium carbonate can have a preventive effect against possible diabetic damage such as circulatory disorders of the coronary arteries, the legs and the eyes (10).

Protection against osteoporosis, arthrosis and arthritis

Sod initiates the breakdown of the free radical superoxide and can therefore help prevent osteoporosis (11). The radical superoxide can stimulate cells (osteoclasts) in the body to break down bone tissue. These cells can contribute in large quantities to the development of osteoporosis.

Free radicals can weaken tissue, so sod can also be used to treat osteoarthritis and arthritis. Positive effects of sod may be seen in rheumatoid arthritis in the form of reduced pain, inflammation and swelling, as well as improved mobility (12).

Supporting detoxification processes

Sodium can also support detoxification processes in the liver and is involved in the detoxification of heavy metals such as mercury, contributing to a strengthened immune system. Increased heavy metal levels with increased oxidative stress as well as after physical training.

sod-test

After long workouts, taking soda can be significant and help your body break down superoxide. (Image source: GMB Fitness / unsplash)

During exercise, both the oxygen burn and the production of free radicals can increase dramatically. With unseasonably high and intense exercise, your body's antioxidant capacity may not be able to cope with such a load. Sod intake can support your body here (13).

Protecting the eyes and skin

Sod is highly concentrated in the lenses of the eyes and can partially regenerate tissues that have been stressed by radiation therapy, for example, and protect against age-related macular degeneration (14).

Sod can reduce skin damage caused by ultraviolet rays and activate regeneration processes. Premature ageing processes, such as age spots and wrinkles, can also be somewhat counteracted (15).

When and for whom is it useful to take sod?

Factors that may speak in favour of taking sod are:

  • Excessive exposure to ultraviolet rays: Exposing your body to high levels of sunlight without protection can reduce the amount of sodium carbonate in the skin (15).
  • Age: As we age, the body's own production of sodium decreases; you can have your levels measured in your blood (16).
  • Homocysteine: Other various factors can contribute to the reduction of sodium, including the amino acid homocysteine, which can reduce extracellular levels of sodium (17).

The supplementary intake of sodium carbonate for the prevention of premature cell ageing is particularly recommended in the case of increased exposure to oxidative stress due to your lifestyle, which can be caused by the following factors:

  • Tobacco use
  • Stress
  • Sport or other intense physical exertion (13)
  • Obesity (18)

If you are taking medication or are under medical treatment, you should consult your doctor about possible interactions before taking it.

For your children, you should always check with a doctor before taking the product, as most of the studies were conducted with adults.

The studies do not indicate a dosage for children, nor are there any known side effects.

What types of soda are there?

The body contains an average of 60 micrograms of sodium carbonate per millilitre of blood. Sodium occurs in various forms, with the trace elements copper, zinc and manganese as important components (19, 20, 21).

Type Description
Copper/zinc sod This type of sod is also called orgotein is found in the cytosol of cells.
Manganese sod Manganese sod is a central building block of the mitochondria of cells.
Sod from the Germin family The extracellular superoxide dismutase contains copper and zinc.

Another type of sod is the synthetically produced variety.

What are the side effects of taking sod?

Instead of reducing oxidative stress, increased expression of Sod may cause increased oxidative stress. There may be increased lipid peroxidation and hypersensitivity to oxidative stress, even though Sod is an antioxidant enzyme (22, 23).

What are the alternatives to sod?

The five major groups of antioxidants are vitamins, minerals, trace elements and enzymes, sod being one of the enzymes. We have listed some of the best-known antioxidants here:

Antioxidant Description
Vitamin C Vitamin C (24) is found in many fruits and vegetables, such as citrus fruits and peppers, rosehip, sea buckthorn and the acerola cherry.
Trace elements trace elements such as selenium, iron and zinc can only have an antioxidant effect when they act as components of enzymes.
OPC (Oligomeric Proanthocyanidins) OPC consists of secondary plant compounds from the grape seed and can have a strong antioxidant effect (25). OPC can enhance the antioxidant power of vitamins and vice versa.
Glutathione Glutathione is made up of three amino acids and is considered one of the most powerful antioxidants that can also be produced naturally in the body. It is considered a popular anti-ageing agent.
Allicin allicin, which is found in garlic, leeks and onions, belongs to the sulphur-containing secondary plant substances and can have a preventive effect against heart attacks and strokes.
Carotenoids carotenoids are red or orange plant pigments that can have a light-protective effect. (26)

This table serves only as a brief overview. There are several other antioxidants that can serve as an alternative to soda.

Image source: 123rf / 111782243

References (26)

1. H. Younus (2018): Therapeutic potentials of superoxide dismutase, veröffentlicht in: International Journal of Health Sciences, S.88-93. PMID: 29896077.
Source

2. Michael P. Lisanti, Ubaldo E. Martinez-Outschoorn, Barbara Chiavarina, Stephanos Pavlides, Diana Whitaker-Menezes, Aristotelis Tsirigos, Agnieszka K. Witkiewicz, Zhao Lin, Renee M. Balliet, Anthony Howell & Federica Sotgia (2010): Understanding the "lethal" drivers of tumor-stroma co-evolution, veröffentlicht in: Cancer Biology & Therapy, 10:6, S.537-542, DOI: 10.4161/cbt.10.6.13370
Source

3. A. Glasauer, L. A. Sena, L. P. Diebold, A. P. Mazar, N. S. Chandel (2014): Targeting SOD1 reduces experimental non–small-cell lung cancer, veröffentlicht in: J Clin Invest 124 (1), S.117-128. DOI: 10.1172/JCI71714. PMID: 24292713.
Source

4. M. A. Pappolla, R. A. Omar, K. S. Kim, N. K. Robakis, korrigiert von Am J. Pathol (1992): Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer's disease, veröffentlicht in: The American Journal of Pathology, S.621–628. PMID: 1372157.
Source

5. F. P. Zemlan, O. J. Thienhaus, H. B. Bosmann (1989): Superoxide dismutase activity in Alzheimer's disease: Possible mechanism for paired helical filament formation, veröffentlicht in: Brain Res, S.160-162. DOI: 10.1016/0006-8993(89)91550-3.
Source

6. Catherine A. Rice-Evans, Anthony T. Diplock (1993): Current status of antioxidant therapy, veröffentlicht in: Free Radical Biology and Medicine 15 (1), July 1993, S.77-96. https://doi.org/10.1016/0891-5849(93)90127-G
Source

7. Michael M. Gaschlera, Brent R. Stockwell (2017): Lipid peroxidation in cell death, veröffentlicht in: Biochemical and Biophysical Research Communications 482 (3), S.419-425. DOI: https://dx.doi.org/10.1016%2Fj.bbrc.2016.10.086
Source

8. F. Karataş, I. Ozates, H. Canatan, I. Halifeoglu, M. Karatepe, R. Colakt (2003): Antioxidant status & lipid peroxidation in patients with rheumatoid arthritis, veröffentlicht in: The Indian journal of medical research 118, S. 41-44. PMID: 14700353.
Source

9. J. W. Baynes, S. R. Thorpe (1999): Role of oxidative stress in diabetic complications: a new perspective on an old paradigm, veröffentlicht in: Diabetes1999 48 (1), S.1-9. DOI: 10.2337/diabetes.48.1.1.
Source

10. J. W. Baynes (1991): Role of oxidative stress in development of complications in diabetes, veröffentlicht in: Diabetes 1991 40 (4), S.405-412. DOI: 10.2337/diab.40.4.405.
Source

11. Salih Ozgocmen, Huseyin Kaya, Ersin Fadillioglu, Rabia Aydogan & Zumrut Yilmaz (2007): Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis, veröffentlicht in: Molecular and Cellular Biochemistry volume 295, S. 45–52.
Source

12. M. Ugur, K. Yildirim, A. Kiziltunc, A. Erdal, S. Karatay & K. Senel (2004): Correlation between soluble intercellular adhesion molecule 1 level and extracellular superoxide dismutase activity in rheumatoid arthritis: a possible association with disease activity, veröffentlicht in: Scandinavian Journal of Rheumatology 33 (4), S.239-243, DOI: 10.1080/03009740310004054.
Source

13. P. Diaba-Nuhoho, E. K. Ofori, H. Asare-Anane et al. (2018): Impact of exercise intensity on oxidative stress and selected metabolic markers in young adults, Ghana, veröffentlicht in: BMC Res Notes 11, S.1-7. https://doi.org/10.1186/s13104-018-3758-y.
Source

14. Leopold Flohe (1989): Superoxide dismutase for therapeutic use: Clinical experience, dead ends and hopes, veröffentlicht in: Molecular and cellular biochemistry 84, S. 123-131. DOI: 10.1007/BF00421046.
Source

15. Myung-Ja Kwon, Byung Hak Kim, Yun Sang Lee, Tae-Yoon Kim (2012): Role of superoxide dismutase 3 in skin inflammation, veröffentlicht in: Journal of Dermatological Science Vol. 67 (2),S.81-87. https://doi.org/10.1016/j.jdermsci.2012.06.003.
Source

16. E. D. Levin (2005): Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: opportunities for novel drug development in aging, veröffentlicht in: Current Alzheimer Res. 2005 2 (2). DOI: 10.2174/1567205053585710.
Source

17. Masayuki Yamamoto, Hirokazu Hara, Tetsuo Adachi, überarbeitet von Pierre Jolles (2000): Effects of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface, veröffentlicht in: FEBS Letters Vol. 486 (2), S.159-162. https://doi.org/10.1016/S0014-5793(00)02260-2.
Source

18. N. I. Khan, L. Naz, G. Yasmeen (2006): Obesity: an independent risk factor for systemic oxidative stress, veröffentlicht in: Pakistan Journal of Pharmaceutical Sciences;19(1): 62-5. PMID: 16632456.
Source

19. Axel K., Hans L., Edda K. (2005): Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase, veröffentlicht in Journal of Theoretical Biology. S.1-13. doi:10.1016/j.jtbi.2005.06.034
Source

20. G. Bartsch, H. Marberger (1982): Orgotein, ein neues Medikament bei der Behandlung der Induratio penis plastica, veröffentlicht in: Albrecht K.F., Kaufmann J. (eds) Verhandlungsbericht der Deutschen Gesellschaft für Urologie, Vol. 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81831-8_32
Source

21. R. P. Bowler, M. Nicks, K. Tran, G. Tanner, L. Y. Chang, S. K. Young, G. S. Worthen (2004): Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am J Respir Cell Mol Biol. 31(4) S.432-439. doi: 10.1165/rcmb.2004-0057OC. Epub 2004 Jul 15. PMID: 15256385.
Source

22. Axel Kowald, Hans Lehrach, Edda Klipp (2005): Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase, veröffentlicht in Journal of Theoretical Biology, S.1,2. doi:10.1016/j.jtbi.2005.06.034
Source

23. M. Corominas, J. Bas, A. Romeu, et al. (1990): Hypersensitivity reaction after orgotein (superoxide dismutase) administration, veröffentlicht in: Allergologia et Immunopathologia 18 (5), S.297-299. PMID: 2151501.
Source

24. A. Bendich, L. J. Machlin, O. Scandurra, G. W. Burton, D. D. M. Wayner (1986): The antioxidant role of Advances in vitamin c, veröffentlicht in: Free Radical Biology & Medicine Vol. 2 (2), S.419-444. https://doi.org/10.1016/S8755-9668(86)80021-7.
Source

25. M. C. Lu, M. D. Yang, P. C. Li, H. Y. Fang, H. Y. Huang, Y. C. Chan, D. T. Bau (2018): Effect of Oligomeric Proanthocyanidin on the Antioxidant Status and Lung Function of Patients with Chronic Obstructive Pulmonary Disease., veröffentlicht in: Vivo 32 (4), S.753-758. DOI:10.21873/invivo.11304. PMID: 29936455; PMCID: PMC6117753.
Source

26. E. Camera, A. Mastrofrancesco, C. Fabbri, F. Daubrawa, M. Picardo, H. Sies, W. Stahl, W. Astaxanthin (2009): Canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes, veröffentlicht in: Exp Dermatol. 18(3), S.222-231. doi: 10.1111/j.1600-0625.2008.00790.x.
Source

Why you can trust me?

Wissenschaftlicher Bericht
H. Younus (2018): Therapeutic potentials of superoxide dismutase, veröffentlicht in: International Journal of Health Sciences, S.88-93. PMID: 29896077.
Go to source
Wissenschaftlicher Bericht
Michael P. Lisanti, Ubaldo E. Martinez-Outschoorn, Barbara Chiavarina, Stephanos Pavlides, Diana Whitaker-Menezes, Aristotelis Tsirigos, Agnieszka K. Witkiewicz, Zhao Lin, Renee M. Balliet, Anthony Howell & Federica Sotgia (2010): Understanding the "lethal" drivers of tumor-stroma co-evolution, veröffentlicht in: Cancer Biology & Therapy, 10:6, S.537-542, DOI: 10.4161/cbt.10.6.13370
Go to source
Wissenschaftliche Studie
A. Glasauer, L. A. Sena, L. P. Diebold, A. P. Mazar, N. S. Chandel (2014): Targeting SOD1 reduces experimental non–small-cell lung cancer, veröffentlicht in: J Clin Invest 124 (1), S.117-128. DOI: 10.1172/JCI71714. PMID: 24292713.
Go to source
Wissenschaftliche Studie
M. A. Pappolla, R. A. Omar, K. S. Kim, N. K. Robakis, korrigiert von Am J. Pathol (1992): Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer's disease, veröffentlicht in: The American Journal of Pathology, S.621–628. PMID: 1372157.
Go to source
Kurzer wissenschaftlicher Bericht
F. P. Zemlan, O. J. Thienhaus, H. B. Bosmann (1989): Superoxide dismutase activity in Alzheimer's disease: Possible mechanism for paired helical filament formation, veröffentlicht in: Brain Res, S.160-162. DOI: 10.1016/0006-8993(89)91550-3.
Go to source
Wissenschaftlicher Bericht
Catherine A. Rice-Evans, Anthony T. Diplock (1993): Current status of antioxidant therapy, veröffentlicht in: Free Radical Biology and Medicine 15 (1), July 1993, S.77-96. https://doi.org/10.1016/0891-5849(93)90127-G
Go to source
Wissenschaftlicher Bericht
Michael M. Gaschlera, Brent R. Stockwell (2017): Lipid peroxidation in cell death, veröffentlicht in: Biochemical and Biophysical Research Communications 482 (3), S.419-425. DOI: https://dx.doi.org/10.1016%2Fj.bbrc.2016.10.086
Go to source
Klinische Studie
F. Karataş, I. Ozates, H. Canatan, I. Halifeoglu, M. Karatepe, R. Colakt (2003): Antioxidant status & lipid peroxidation in patients with rheumatoid arthritis, veröffentlicht in: The Indian journal of medical research 118, S. 41-44. PMID: 14700353.
Go to source
Wissenschaftlicher Bericht
J. W. Baynes, S. R. Thorpe (1999): Role of oxidative stress in diabetic complications: a new perspective on an old paradigm, veröffentlicht in: Diabetes1999 48 (1), S.1-9. DOI: 10.2337/diabetes.48.1.1.
Go to source
Wissenschaftlicher Bericht
J. W. Baynes (1991): Role of oxidative stress in development of complications in diabetes, veröffentlicht in: Diabetes 1991 40 (4), S.405-412. DOI: 10.2337/diab.40.4.405.
Go to source
Wissenschaftliche Studie
Salih Ozgocmen, Huseyin Kaya, Ersin Fadillioglu, Rabia Aydogan & Zumrut Yilmaz (2007): Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis, veröffentlicht in: Molecular and Cellular Biochemistry volume 295, S. 45–52.
Go to source
Wissenschaftliche Studie
M. Ugur, K. Yildirim, A. Kiziltunc, A. Erdal, S. Karatay & K. Senel (2004): Correlation between soluble intercellular adhesion molecule 1 level and extracellular superoxide dismutase activity in rheumatoid arthritis: a possible association with disease activity, veröffentlicht in: Scandinavian Journal of Rheumatology 33 (4), S.239-243, DOI: 10.1080/03009740310004054.
Go to source
Wissenschaftliche Studie
P. Diaba-Nuhoho, E. K. Ofori, H. Asare-Anane et al. (2018): Impact of exercise intensity on oxidative stress and selected metabolic markers in young adults, Ghana, veröffentlicht in: BMC Res Notes 11, S.1-7. https://doi.org/10.1186/s13104-018-3758-y.
Go to source
Klinische Studie
Leopold Flohe (1989): Superoxide dismutase for therapeutic use: Clinical experience, dead ends and hopes, veröffentlicht in: Molecular and cellular biochemistry 84, S. 123-131. DOI: 10.1007/BF00421046.
Go to source
Wissenschaftliche Studie
Myung-Ja Kwon, Byung Hak Kim, Yun Sang Lee, Tae-Yoon Kim (2012): Role of superoxide dismutase 3 in skin inflammation, veröffentlicht in: Journal of Dermatological Science Vol. 67 (2),S.81-87. https://doi.org/10.1016/j.jdermsci.2012.06.003.
Go to source
Wissenschaftlicher Bericht
E. D. Levin (2005): Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: opportunities for novel drug development in aging, veröffentlicht in: Current Alzheimer Res. 2005 2 (2). DOI: 10.2174/1567205053585710.
Go to source
Wissenschaftliche Studie
Masayuki Yamamoto, Hirokazu Hara, Tetsuo Adachi, überarbeitet von Pierre Jolles (2000): Effects of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface, veröffentlicht in: FEBS Letters Vol. 486 (2), S.159-162. https://doi.org/10.1016/S0014-5793(00)02260-2.
Go to source
Wissenschaftliche Studie
N. I. Khan, L. Naz, G. Yasmeen (2006): Obesity: an independent risk factor for systemic oxidative stress, veröffentlicht in: Pakistan Journal of Pharmaceutical Sciences;19(1): 62-5. PMID: 16632456.
Go to source
Wissenschaftliche Studie
Axel K., Hans L., Edda K. (2005): Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase, veröffentlicht in Journal of Theoretical Biology. S.1-13. doi:10.1016/j.jtbi.2005.06.034
Go to source
Wissenschaftlicher Bericht
G. Bartsch, H. Marberger (1982): Orgotein, ein neues Medikament bei der Behandlung der Induratio penis plastica, veröffentlicht in: Albrecht K.F., Kaufmann J. (eds) Verhandlungsbericht der Deutschen Gesellschaft für Urologie, Vol. 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81831-8_32
Go to source
Wissenschaftliche Studie
R. P. Bowler, M. Nicks, K. Tran, G. Tanner, L. Y. Chang, S. K. Young, G. S. Worthen (2004): Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am J Respir Cell Mol Biol. 31(4) S.432-439. doi: 10.1165/rcmb.2004-0057OC. Epub 2004 Jul 15. PMID: 15256385.
Go to source
Wissenschaftliche Studie
Axel Kowald, Hans Lehrach, Edda Klipp (2005): Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase, veröffentlicht in Journal of Theoretical Biology, S.1,2. doi:10.1016/j.jtbi.2005.06.034
Go to source
Wissenschaftlicher Bericht
M. Corominas, J. Bas, A. Romeu, et al. (1990): Hypersensitivity reaction after orgotein (superoxide dismutase) administration, veröffentlicht in: Allergologia et Immunopathologia 18 (5), S.297-299. PMID: 2151501.
Go to source
Wissenschaftlicher Bericht
A. Bendich, L. J. Machlin, O. Scandurra, G. W. Burton, D. D. M. Wayner (1986): The antioxidant role of Advances in vitamin c, veröffentlicht in: Free Radical Biology & Medicine Vol. 2 (2), S.419-444. https://doi.org/10.1016/S8755-9668(86)80021-7.
Go to source
Wissenschaftliche Beobachtungsstudie
M. C. Lu, M. D. Yang, P. C. Li, H. Y. Fang, H. Y. Huang, Y. C. Chan, D. T. Bau (2018): Effect of Oligomeric Proanthocyanidin on the Antioxidant Status and Lung Function of Patients with Chronic Obstructive Pulmonary Disease., veröffentlicht in: Vivo 32 (4), S.753-758. DOI:10.21873/invivo.11304. PMID: 29936455; PMCID: PMC6117753.
Go to source
Wissenschaftliche Studie
E. Camera, A. Mastrofrancesco, C. Fabbri, F. Daubrawa, M. Picardo, H. Sies, W. Stahl, W. Astaxanthin (2009): Canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes, veröffentlicht in: Exp Dermatol. 18(3), S.222-231. doi: 10.1111/j.1600-0625.2008.00790.x.
Go to source
Reviews